‍Chemistry World: Dr. Sami Sajjadifar

در این وبلاگ مطالب تخصصی شیمی آلی مطرح و درج خواهد شد ( برای دیدن مطالب متنوع تر به قسمت آرشیو بروید).

‍Chemistry World: Dr. Sami Sajjadifar

در این وبلاگ مطالب تخصصی شیمی آلی مطرح و درج خواهد شد ( برای دیدن مطالب متنوع تر به قسمت آرشیو بروید).

Efficient Catalytic Synthesis of Xanthenes with Copper Immobilized on Amine-Modified NaY

Efficient Catalytic Synthesis of Xanthenes with Copper Immobilized on Amine-Modified NaY

Mohammadreza Azizi Amiri; Hamidreza Younesi; Haniye Kazemi Aqmashhadi; Ghasem Firouzzadeh Pasha; Sakineh Asghari; Mahmood Tajbakhsh

Volume 8, Issue 1 , December 2023, Pages 1-22

https://doi.org/10.48309/chemm.2024.424058.1737

Abstract
  The purpose of this article is to describe the synthesis of copper-amine complexes on nano NaY zeolite (Cu@NNPS-NaY), as a highly efficient, reusable, and environmentally friendly catalyst for the xanthenes synthesis. The Cu@NNPS-NaY catalyst was prepared from the reaction of silane-bonded nano NaY Zeolite (CPS-NaY) with [2-({3-[(2-aminoethyl) thio]propyl} thio)ethyl]amine (NN) followed by immobilizing copper ions onto the NNPS-NaY surface. The catalyst structure was characterized using FT-IR, XRD, TGA, EDS, DLS, SEM, TEM, ICP, and elemental analyses. The bonded long-chain amine including heteroatoms on the zeolite surface improved its catalytic activity and homogeneity, making it more capable of coordinating with copper ions. Synthesis of xanthenes was performed in the presence of Cu@NNPS-NaY catalyst (30 mg) in EtOH (10 mL) at 60 °C within 10-60 minutes resulting in product yields of 84-97%. The prepared catalyst can be easily recovered by centrifugation and reused for at least twelve consecutive runs with no significant loss of its catalytic activity. Besides the simplicity of catalyst recovery and reusing, the method is easy to set up and versatile, making it an environmentally friendly way to prepare titled heterocycles. Based on the results of this study, other useful heterocycles could be synthesized under eco-friendly conditions using this catalytic system.
  • View Article
  •     PDF   از این قسمت پی دی اف مقاله را دانلود کنید

=================================================================================

ORCID

Mohammadreza Azizi Amiri

https://orcid.org/0000-0001-8452-3762

Hamidreza Younesi

https://orcid.org/0000-0002-0738-7645

Haniye Kazemi Aqmashhadi

https://orcid.org/0009-0006-7606-7609

Ghasem Firouzzadeh Pasha

https://orcid.org/0000-0002-5054-2938

Sakineh Asghari

https://orcid.org/0000-0002-6608-9525

Mahmood Tajbakhsh

https://orcid.org/0000-0002-4856-1937

HOW TO CITE THIS ARTICLE

Mohammadreza Azizi Amiri, Hamidreza Younesi, Haniye Kazemi Aqmashhadi, Ghasem Firouzzadeh Pasha*, Sakineh Asghari. Mahmood Tajbakhsh*. Efficient Catalytic Synthesis of Xanthenes with Copper Immobilized on Amine-Modified NaY. Chem. Methodol., 2024, 8(1) 1-22

DOI: https://doi.org/10.48309/chemm.2024.424058.1737  

URL: https://www.chemmethod.com/article_185369.html

====================================================================

[1]. Centi G., Perathoner S., Catalysis and sustainable (green) chemistry, Catalysis Today, 2003, 77:287 [Crossref], [Google Scholar], [Publisher]
[2]. Lam C.-w., James J.T., McCluskey R., Arepalli S., Hunter R.L., A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Critical Reviews in Toxicology, 2006, 36:189 [Crossref], [Google Scholar], [Publisher]
[3]. Climent M.J., Corma A., Iborra S., Homogeneous and heterogeneous catalysts for multicomponent reactions, RSC Advances, 2012, 2:16 [Crossref], [Google Scholar], [Publisher]
[4]. Jiang B., Rajale T., Wever W., Tu S.J., Li G., Multicomponent reactions for the synthesis of heterocycles, Chemistry–An Asian Journal, 2010, 5:2318 [Crossref], [Google Scholar], [Publisher]
[5]. Maleki A., Ghassemi M., Firouzi-Haji R., Green multicomponent synthesis of four different classes of six-membered N-containing and O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite, Pure and Applied Chemistry, 2018, 90:387 [Crossref], [Google Scholar], [Publisher]
[6]. Dindarloo Inaloo I., Majnooni S., Eslahi H., Esmaeilpour M., Air‐Stable Fe3O4@SiO2‐EDTA‐Ni (0) as an Efficient Recyclable Magnetic Nanocatalyst for Effective Suzuki‐Miyaura and Heck Cross‐Coupling via Aryl Sulfamates and Carbamates, Applied Organometallic Chemistry, 2020, 34:e5662 [Crossref], [Google Scholar], [Publisher]
[7]. Montalvo S., Guerrero L., Borja R., Sánchez E., Milán Z., Cortés I., De La La Rubia M.A., Application of natural zeolites in anaerobic digestion processes: A review, Applied Clay Science, 2012, 58:125 [Crossref], [Google Scholar], [Publisher]
[8]. Takmil N.F., Jaleh B., Mohazzab B.F., Khazalpour S., Rostami-Vartooni A., Nguyen T.H.C., Nguyen X.C., Varma R.S., Hydrogen production by electrochemical reaction using waste zeolite boosted with titania and Au nanoparticles, Inorganic Chemistry Communications, 2021, 133:108891 [Crossref], [Google Scholar], [Publisher]
[9]. Azizi Amiri M., Pasha G.F., Tajbakhsh M., Asghari S., Copper‐amine complex immobilized on nano NaY zeolite as a recyclable nanocatalyst for the environmentally friendly synthesis of 2‐amino‐4H‐chromenes, Applied Organometallic Chemistry, 2022, 36:e6886 [Crossref], [Google Scholar], [Publisher]
[10]. Younesi H., Asghari S., Pasha G.F., Tajbakhsh M., Ugi‐modified nano NaY zeolite for the synthesis of new 1, 5‐dihydro‐2H‐pyrrol‐2‐ones under mild conditions, Applied Organometallic Chemistry, 2023, e7127 [Crossref], [Google Scholar], [Publisher]
[11]. Younesi H., Asghari S., Firouzzadeh Pasha G., Tajbakhsh M., Copper-carboxamide complex immobilized on nano NaY zeolite: an efficient catalyst for xanthenes synthesis, Research on Chemical Intermediates, 2023, 1 [Crossref], [Google Scholar], [Publisher]
[12]. Santos S.J., Rossatto F.C., Jardim N.S., Ávila D.S., Ligabue-Braun R., Fontoura L.A., Zimmer K.R., Russowsky D., Chromene-dihydropyrimidinone and xanthene-dihydropyrimidinone hybrids: design, synthesis, and antibacterial and antibiofilm activities, New Journal of Chemistry, 2023, 47:7500 [Crossref], [Google Scholar], [Publisher]
[13]. (a) Hafez H., Hegab M., Ahmed-Farag I., El-Gazzar A., A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′, 2-[1, 3, 4] thiadiazole derivatives as potential analgesic and anti-inflammatory agents, Bioorganic & medicinal chemistry letters, 2008, 18:4538 [Crossref], [Google Scholar], [Publisher] (b) Baghernejad B., Alikhani M., Nano-cerium oxide/aluminum oxide as an efficient catalyst for the synthesis of xanthene derivatives as potential antiviral and anti-inflammatory agents, Quarterly Journal of Iranian Chemical Communication, 2020, 8:240 [Crossref], [Google Scholar], [Publisher]
[14]. Pinto M., Sousa M., Nascimento M., Xanthone derivatives: new insights in biological activities, Current medicinal chemistry, 2005, 12:2517 [Crossref], [Google Scholar], [Publisher]
[15]. Chibale K., Visser M., van Schalkwyk D., Smith P.J., Saravanamuthu A., Fairlamb A.H., Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents, Tetrahedron, 2003, 59:2289 [Crossref], [Google Scholar], [Publisher]
[16]. Maia M., Resende D.I., Duraes F., Pinto M.M., Sousa E., Xanthenes in Medicinal Chemistry–Synthetic strategies and biological activities, European journal of medicinal chemistry, 2021, 210:113085 [Crossref], [Google Scholar], [Publisher]
[17]. Sarma R.J., Baruah J.B., One step synthesis of dibenzoxanthenes, Dyes and pigments, 2005, 64:91 [Crossref], [Google Scholar], [Publisher]
[18]. Harichandran G., Amalraj S.D., Shanmugam P., Synthesis and characterization of phosphate anchored MnO2 catalyzed solvent free synthesis of xanthene laser dyes, Journal of Molecular Catalysis A: Chemical, 2014, 392:31 [Crossref], [Google Scholar], [Publisher]
[19]. Bhowmik B.B., Ganguly P., Photophysics of xanthene dyes in surfactant solution, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61:1997 [Crossref], [Google Scholar], [Publisher]
[20]. Subodh, Mogha N.K., Chaudhary K., Kumar G., Masram D.T., Fur-imine-functionalized graphene oxide-immobilized copper oxide nanoparticle catalyst for the synthesis of xanthene derivatives, ACS Omega, 2018, 3:16377 [Crossref], [Google Scholar], [Publisher]
[21]. Das B., Ravikanth B., Ramu R., Laxminarayana K., Rao B.V., Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo [a, j] xanthenes, Journal of Molecular Catalysis A: Chemical, 2006, 255:74 [Crossref], [Google Scholar], [Publisher]
[22]. El-Dafrawy S.M., Salama R.S., El-Hakam S.A., Samra S.E., Bimetal-organic frameworks (Cux-Cr100-x–MOF) as a stable and efficient catalyst for synthesis of 3, 4-dihydropyrimidin-2-one and 14-phenyl-14H-dibenzo [a, j] xanthene, Journal of Materials Research and Technology, 2020, 9:1998 [Crossref], [Google Scholar], [Publisher]
[23]. Naderi S., Sandaroos R., Peiman S., Maleki B., Novel crowned cobalt (II) complex containing an ionic liquid: A green and efficient catalyst for the one-pot synthesis of chromene and xanthene derivatives starting from benzylic alcohols, Journal of Physics and Chemistry of Solids, 2023, 111459 [Crossref], [Google Scholar], [Publisher]
[24]. Alipour A., Naeimi H., Design, fabrication and characterization of magnetic nickel copper ferrite nanocomposites and their application as a reusable nanocatalyst for sonochemical synthesis of 14-aryl-14-H-dibenzo [a,j] xanthene derivatives, Research on Chemical Intermediates, 2023, 49:2705 [Google Scholar], [Publisher]
[25]. Mousavifar S.M., Kefayati H., Shariati S., Fe3O4@Propylsilane@Histidine [HSO4‐] magnetic nanocatalysts: Synthesis, characterization and catalytic application for highly efficient synthesis of xanthene derivatives, Applied Organometallic Chemistry, 2018, 32:e4242 [Crossref], [Google Scholar], [Publisher]
[26]. Zeydi M., Preparation of 1, 3, 5-Triazine-2, 4, 6-triaminium Trifluoromethanesulfonate and Its Use as an Eco-friendly Catalyst for the Synthesis of Xanthene Derivatives, Russian Journal of Organic Chemistry, 2022, 58:557 [Crossref], [Google Scholar], [Publisher]
[27]. Ghamari kargar P., Bagherzade G., Beyzaei H., Arghavani S., BioMOF-Mn: an antimicrobial agent and an efficient nanocatalyst for domino one-pot preparation of xanthene derivatives, Inorganic Chemistry, 2022, 61:10678 [Crossref], [Google Scholar], [Publisher]
[28]. Fallah A., Tajbakhsh M., Vahedi H., Bekhradnia A., Natural phosphate as an efficient and green catalyst for synthesis of tetraketone and xanthene derivatives, Research on Chemical Intermediates, 2017, 43:29 [Crossref], [Google Scholar], [Publisher]
[29]. Zhu A., Bai S., Jin W., Liu R., Li L., Zhao Y., Wang J., An efficient and reusable ionic liquid catalyst for the synthesis of 14-aryl-14H-dibenzo [a, j] xanthenes under solvent-free conditions, RSC advances, 2014, 4:36031 [Crossref], [Google Scholar], [Publisher]
[30]. (a) Vilaça N., Amorim R., Martinho O., Reis R.M., Baltazar F., Fonseca A.M., Neves I.C., Encapsulation of α-cyano-4-hydroxycinnamic acid into a NaY zeolite, Journal of materials science, 2011, 46:7511 [Crossref], [Google Scholar], [Publisher] (b) Swami M., Nagargoje G., Mathapati S., Bondge A., Jadhav A., Panchgalle S., More V., A magnetically recoverable and highly effectual Fe3O4 encapsulated MWCNTs nano-composite for synthesis of 1, 8-dioxo-octahydroxanthene derivatives, J. Appl. Organomet. Chem., 2023, 3:184 [Crossref], [Google Scholar], [Publisher] (c) Sajjadifar S., Hamidi H., Pal K., Revisiting of Boron Sulfonic Acid Applications in Organic Synthesis: Mini-Review, Journal of Chemical Reviews, 2019, 1:35 [Google Scholar], [Publisher]
[31]. Asghari S., Alizadeh D., Younesi H., Firouzzadeh Pasha G., Synthesis of Spiro 1, 3-Oxazines via Three-Component Reaction of Conjugated Imines, Dialkyl Acetylenedicarboxylates and N, N'-Disubstituted Parabanic Acids, Polycyclic Aromatic Compounds, 2022, 42:6303 [Crossref], [Google Scholar], [Publisher]
[32]. Travkina O., Agliullin M., Filippova N., Khazipova A., Danilova I., Grigor'Eva N., Narender N., Pavlov M., Kutepov B., Template-free synthesis of high degree crystallinity zeolite Y with micro–meso–macroporous structure, RSC Advances, 2017, 7:32581 [Crossref], [Google Scholar], [Publisher]
[33]. Sivakumar K., Santhanam A., Natarajan M., Velauthapillai D., Rangasamy B., Seed‐Free Synthesis and Characterization of Zeolite Faujasite Aluminosilicate Coating on α‐Alumina Supports, International Journal of Applied Ceramic Technology, 2016, 13:1182 [Crossref], [Google Scholar], [Publisher]
[34]. Rongchapo W., Keawkumay C., Osakoo N., Deekamwong K., Chanlek N., Prayoonpokarach S., Wittayakun J., Comprehension of paraquat adsorption on faujasite zeolite X and Y in sodium form, Adsorption Science & Technology, 2018, 36:684 [Crossref], [Google Scholar], [Publisher]
[35]. Ghassamipour S., Ghashghaei R., Zirconium dodecylphosphonate promoted synthesis of xanthene derivatives by condensation reaction of aldehydes and β-naphthol or dimedone in green media, Monatshefte für Chemie-Chemical Monthly, 2015, 146:159 [Crossref], [Google Scholar], [Publisher]
[36]. Song G., Wang B., Luo H., Yang L., Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones, Catalysis Communications, 2007, 8:673 [Crossref], [Google Scholar], [Publisher]
[37]. Ilangovan A., Muralidharan S., Sakthivel P., Malayappasamy S., Karuppusamy S., Kaushik M., Simple and cost effective acid catalysts for efficient synthesis of 9-aryl-1, 8-dioxooctahydroxanthene, Tetrahedron Letters, 2013, 54:491 [Crossref], [Google Scholar], [Publisher]
[38]. Dabiri M., Azimi S., Bazgir A., One-pot synthesis of xanthene derivatives under solvent-free conditions, Chemical Papers, 2008, 62:522 [Crossref], [Google Scholar], [Publisher]
[39]. Moradi F., Abdoli-Senejani M., Silica-coated Fe3O4 nanoparticle@silylpropyl triethylammonium heteropoly acid as a nanomagnetic inorganic–organic hybrid catalyst for the green synthesis of xanthene derivatives under solvent-free conditions, Reaction Kinetics, Mechanisms and Catalysis, 2023, 1 [Crossref], [Google Scholar], [Publisher]
[40]. Amoozadeh A., Rahmani S., Nano-WO3-supported sulfonic acid: New, efficient and high reusable heterogeneous nano catalyst, Journal of Molecular Catalysis A: Chemical, 2015, 396:96 [Crossref], [Google Scholar], [Publisher]
[41]. Rezayati S., Erfani, Z.,Hajinasiri, R., Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo [a, j] xanthenes and 1, 8-dioxo-octahydro-xanthenes, Chemical Papers, 2015, 69:536 [Crossref], [Google Scholar], [Publisher]
[42]. Mir E., Hazeri N., Faroughi Niya H., Fatahpour M., Synthesis, identification and application of Fe3O4@THAM-Mercaptopyrimidine nanoparticles as a novel and highly recyclable nanocatalyst in one-pot multicomponent synthesis of 1, 8-dioxo-octahydroxanthenes and polyhydroquinolines, Research on Chemical Intermediates, 2023, 49:1439 [Crossref], [Google Scholar], [Publisher]
[43]. Bhale P.S., Dongare S.B., Mule Y.B., An efficient synthesis of 1, 8-dioxooctahydroxanthenes catalysed by thiourea dioxide (TUD) in aqueous media, Chemical Science Transactions, 2015, 4:246 [Google Scholar], [Publisher]
[44]. Zhou Z., Deng X., [Et3NH][HSO4] catalyzed efficient and green synthesis of 1, 8-dioxo-octahydroxanthenes, Journal of Molecular Catalysis A: Chemical, 2013, 367:99 [Crossref], [Google Scholar], [Publisher]
[45]. Gong K., Fang D., Wang H.L., Zhou X.L., Liu Z.L., The one-pot synthesis of 14-alkyl-or aryl-14H-dibenzo [a, j] xanthenes catalyzed by task-specific ionic liquid, Dyes and Pigments, 2009, 80:30 [Crossref], [Google Scholar], [Publisher]
[46]. Safari J., Aftabi P., Ahmadzadeh M., Sadeghi M., Zarnegar Z., Sulfonated starch nanoparticles: An effective, heterogeneous and bio-based catalyst for synthesis of 14-aryl-14-H-dibenzo [a, j] xanthenes, Journal of Molecular Structure, 2017, 1142:33 [Crossref], [Google Scholar], [Publisher]
[47]. Kundu K.,Nayak, S.K., Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo [a, j] xanthenes, Journal of the Serbian Chemical Society, 2014, 79:1051 [Crossref], [Google Scholar], [Publisher]
[48]. Cao Y., Yao C., Qin B., Zhang H., Solvent-free synthesis of 14-aryl-14 H-dibenzo [a, j] xanthenes catalyzed by recyclable and reusable iron (III) triflate, Research on Chemical Intermediates, 2013, 39:3055 [Crossref], [Google Scholar], [Publisher]
[49]. Zolfigol M.A., Moosavi-Zare A.R., Arghavani-Hadi P., Zare A., Khakyzadeh V., Darvishi G., WCl 6 as an efficient, heterogeneous and reusable catalyst for the preparation of 14-aryl-14 H-dibenzo [a, j] xanthenes with high TOF, RSC advances, 2012, 2:3618 [Crossref], [Google Scholar], [Publisher]
[50]. Mohammadi R., Eidi E., Ghavami M., Kassaee M.Z., Chitosan synergistically enhanced by successive Fe3O4 and silver nanoparticles as a novel green catalyst in one-pot, three-component synthesis of tetrahydrobenzo [α] xanthene-11-ones, Journal of Molecular Catalysis A: Chemical, 2014, 393:309 [Crossref], [Google Scholar], [Publisher]

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد