[2]. Lam C.-w.,
James J.T., McCluskey R., Arepalli S., Hunter R.L., A review of carbon
nanotube toxicity and assessment of potential occupational and
environmental health risks,
Critical Reviews in Toxicology, 2006,
36:189 [
Crossref], [
Google Scholar], [
Publisher]
[3]. Climent M.J., Corma A., Iborra S., Homogeneous and heterogeneous catalysts for multicomponent reactions,
RSC Advances, 2012,
2:16 [
Crossref], [
Google Scholar], [
Publisher]
[4]. Jiang B., Rajale T., Wever W., Tu S.J., Li G., Multicomponent reactions for the synthesis of heterocycles,
Chemistry–An Asian Journal, 2010,
5:2318 [
Crossref], [
Google Scholar], [
Publisher]
[5]. Maleki A., Ghassemi M., Firouzi-Haji R., Green multicomponent synthesis of four different classes of six-membered
N-containing and
O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite,
Pure and Applied Chemistry, 2018,
90:387 [
Crossref], [
Google Scholar], [
Publisher]
[6]. Dindarloo Inaloo I., Majnooni S., Eslahi H., Esmaeilpour M., Air‐Stable Fe
3O
4@SiO
2‐EDTA‐Ni (0) as an Efficient Recyclable Magnetic Nanocatalyst for Effective Suzuki‐Miyaura and Heck Cross‐Coupling
via Aryl Sulfamates and Carbamates,
Applied Organometallic Chemistry, 2020,
34:e5662 [
Crossref], [
Google Scholar], [
Publisher]
[7]. Montalvo S.,
Guerrero L., Borja R., Sánchez E., Milán Z., Cortés I., De La La Rubia
M.A., Application of natural zeolites in anaerobic digestion processes: A
review,
Applied Clay Science, 2012,
58:125 [
Crossref], [
Google Scholar], [
Publisher]
[8]. Takmil N.F.,
Jaleh B., Mohazzab B.F., Khazalpour S., Rostami-Vartooni A., Nguyen
T.H.C., Nguyen X.C., Varma R.S., Hydrogen production by electrochemical
reaction using waste zeolite boosted with titania and Au nanoparticles,
Inorganic Chemistry Communications, 2021,
133:108891 [
Crossref], [
Google Scholar], [
Publisher]
[9]. Azizi Amiri
M., Pasha G.F., Tajbakhsh M., Asghari S., Copper‐amine complex
immobilized on nano NaY zeolite as a recyclable nanocatalyst for the
environmentally friendly synthesis of 2‐amino‐4H‐chromenes,
Applied Organometallic Chemistry, 2022,
36:e6886 [
Crossref], [
Google Scholar], [
Publisher]
[10]. Younesi H.,
Asghari S., Pasha G.F., Tajbakhsh M., Ugi‐modified nano NaY zeolite for
the synthesis of new 1, 5‐dihydro‐2H‐pyrrol‐2‐ones under mild
conditions,
Applied Organometallic Chemistry, 2023, e7127 [
Crossref], [
Google Scholar], [
Publisher]
[11]. Younesi H.,
Asghari S., Firouzzadeh Pasha G., Tajbakhsh M., Copper-carboxamide
complex immobilized on nano NaY zeolite: an efficient catalyst for
xanthenes synthesis,
Research on Chemical Intermediates, 2023, 1 [
Crossref], [
Google Scholar], [
Publisher]
[12]. Santos S.J.,
Rossatto F.C., Jardim N.S., Ávila D.S., Ligabue-Braun R., Fontoura L.A.,
Zimmer K.R., Russowsky D., Chromene-dihydropyrimidinone and
xanthene-dihydropyrimidinone hybrids: design, synthesis, and
antibacterial and antibiofilm activities,
New Journal of Chemistry, 2023,
47:7500 [
Crossref], [
Google Scholar], [
Publisher]
[13]. (a) Hafez H.,
Hegab M., Ahmed-Farag I., El-Gazzar A., A facile regioselective
synthesis of novel spiro-thioxanthene and spiro-xanthene-9′, 2-[1, 3, 4]
thiadiazole derivatives as potential analgesic and anti-inflammatory
agents,
Bioorganic & medicinal chemistry letters, 2008,
18:4538 [
Crossref], [
Google Scholar], [
Publisher]
(b) Baghernejad B., Alikhani M., Nano-cerium oxide/aluminum oxide as an
efficient catalyst for the synthesis of xanthene derivatives as
potential antiviral and anti-inflammatory agents,
Quarterly Journal of Iranian Chemical Communication, 2020,
8:240 [
Crossref], [
Google Scholar], [
Publisher]
[14]. Pinto M., Sousa M., Nascimento M., Xanthone derivatives: new insights in biological activities,
Current medicinal chemistry, 2005,
12:2517 [
Crossref], [
Google Scholar], [
Publisher]
[15]. Chibale K.,
Visser M., van Schalkwyk D., Smith P.J., Saravanamuthu A., Fairlamb
A.H., Exploring the potential of xanthene derivatives as trypanothione
reductase inhibitors and chloroquine potentiating agents,
Tetrahedron, 2003,
59:2289 [
Crossref], [
Google Scholar], [
Publisher]
[16]. Maia M.,
Resende D.I., Duraes F., Pinto M.M., Sousa E., Xanthenes in Medicinal
Chemistry–Synthetic strategies and biological activities,
European journal of medicinal chemistry, 2021,
210:113085 [
Crossref], [
Google Scholar], [
Publisher]
[18]. Harichandran
G., Amalraj S.D., Shanmugam P., Synthesis and characterization of
phosphate anchored MnO2 catalyzed solvent free synthesis of xanthene
laser dyes,
Journal of Molecular Catalysis A: Chemical, 2014,
392:31 [
Crossref], [
Google Scholar], [
Publisher]
[19]. Bhowmik B.B., Ganguly P., Photophysics of xanthene dyes in surfactant solution,
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005,
61:1997 [
Crossref], [
Google Scholar], [
Publisher]
[20]. Subodh, Mogha
N.K., Chaudhary K., Kumar G., Masram D.T., Fur-imine-functionalized
graphene oxide-immobilized copper oxide nanoparticle catalyst for the
synthesis of xanthene derivatives,
ACS Omega, 2018,
3:16377 [
Crossref], [
Google Scholar], [
Publisher]
[21]. Das B.,
Ravikanth B., Ramu R., Laxminarayana K., Rao B.V., Iodine catalyzed
simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo [a, j]
xanthenes,
Journal of Molecular Catalysis A: Chemical, 2006,
255:74 [
Crossref], [
Google Scholar], [
Publisher]
[22]. El-Dafrawy
S.M., Salama R.S., El-Hakam S.A., Samra S.E., Bimetal-organic frameworks
(Cux-Cr100-x–MOF) as a stable and efficient catalyst for synthesis of
3, 4-dihydropyrimidin-2-one and 14-phenyl-14H-dibenzo [a, j] xanthene,
Journal of Materials Research and Technology, 2020,
9:1998 [
Crossref], [
Google Scholar], [
Publisher]
[23]. Naderi S.,
Sandaroos R., Peiman S., Maleki B., Novel crowned cobalt (II) complex
containing an ionic liquid: A green and efficient catalyst for the
one-pot synthesis of chromene and xanthene derivatives starting from
benzylic alcohols,
Journal of Physics and Chemistry of Solids, 2023, 111459 [
Crossref], [
Google Scholar], [
Publisher]
[24]. Alipour A.,
Naeimi H., Design, fabrication and characterization of magnetic nickel
copper ferrite nanocomposites and their application as a reusable
nanocatalyst for sonochemical synthesis of 14-aryl-14-
H-dibenzo [a,j] xanthene derivatives,
Research on Chemical Intermediates, 2023,
49:2705 [
Google Scholar], [
Publisher]
[25]. Mousavifar S.M., Kefayati H., Shariati S., Fe
3O
4@Propylsilane@Histidine [HSO
4‐]
magnetic nanocatalysts: Synthesis, characterization and catalytic
application for highly efficient synthesis of xanthene derivatives,
Applied Organometallic Chemistry, 2018,
32:e4242 [
Crossref], [
Google Scholar], [
Publisher]
[26]. Zeydi M.,
Preparation of 1, 3, 5-Triazine-2, 4, 6-triaminium
Trifluoromethanesulfonate and Its Use as an Eco-friendly Catalyst for
the Synthesis of Xanthene Derivatives,
Russian Journal of Organic Chemistry, 2022,
58:557 [
Crossref], [
Google Scholar], [
Publisher]
[27]. Ghamari
kargar P., Bagherzade G., Beyzaei H., Arghavani S., BioMOF-Mn: an
antimicrobial agent and an efficient nanocatalyst for domino one-pot
preparation of xanthene derivatives,
Inorganic Chemistry, 2022,
61:10678 [
Crossref], [
Google Scholar], [
Publisher]
[28]. Fallah A.,
Tajbakhsh M., Vahedi H., Bekhradnia A., Natural phosphate as an
efficient and green catalyst for synthesis of tetraketone and xanthene
derivatives,
Research on Chemical Intermediates, 2017,
43:29 [
Crossref], [
Google Scholar], [
Publisher]
[29]. Zhu A., Bai
S., Jin W., Liu R., Li L., Zhao Y., Wang J., An efficient and reusable
ionic liquid catalyst for the synthesis of 14-aryl-14H-dibenzo [a, j]
xanthenes under solvent-free conditions,
RSC advances, 2014,
4:36031 [
Crossref], [
Google Scholar], [
Publisher]
[30]. (a) Vilaça
N., Amorim R., Martinho O., Reis R.M., Baltazar F., Fonseca A.M., Neves
I.C., Encapsulation of α-cyano-4-hydroxycinnamic acid into a NaY
zeolite,
Journal of materials science, 2011,
46:7511 [
Crossref], [
Google Scholar], [
Publisher]
(b) Swami M., Nagargoje G., Mathapati S., Bondge A., Jadhav A.,
Panchgalle S., More V., A magnetically recoverable and highly effectual
Fe3O4 encapsulated MWCNTs nano-composite for synthesis of 1,
8-dioxo-octahydroxanthene derivatives,
J. Appl. Organomet. Chem., 2023,
3:184 [
Crossref], [
Google Scholar], [
Publisher] (c) Sajjadifar S., Hamidi H., Pal K., Revisiting of Boron Sulfonic Acid Applications in Organic Synthesis: Mini-Review,
Journal of Chemical Reviews, 2019,
1:35 [
Google Scholar], [
Publisher]
[31]. Asghari S.,
Alizadeh D., Younesi H., Firouzzadeh Pasha G., Synthesis of Spiro 1,
3-Oxazines via Three-Component Reaction of Conjugated Imines, Dialkyl
Acetylenedicarboxylates and
N, N'-Disubstituted Parabanic Acids,
Polycyclic Aromatic Compounds, 2022,
42:6303 [
Crossref], [
Google Scholar], [
Publisher]
[32]. Travkina O.,
Agliullin M., Filippova N., Khazipova A., Danilova I., Grigor'Eva N.,
Narender N., Pavlov M., Kutepov B., Template-free synthesis of high
degree crystallinity zeolite Y with micro–meso–macroporous structure,
RSC Advances, 2017,
7:32581 [
Crossref], [
Google Scholar], [
Publisher]
[33]. Sivakumar K.,
Santhanam A., Natarajan M., Velauthapillai D., Rangasamy B., Seed‐Free
Synthesis and Characterization of Zeolite Faujasite Aluminosilicate
Coating on α‐Alumina Supports,
International Journal of Applied Ceramic Technology, 2016,
13:1182 [
Crossref], [
Google Scholar], [
Publisher]
[34]. Rongchapo W.,
Keawkumay C., Osakoo N., Deekamwong K., Chanlek N., Prayoonpokarach S.,
Wittayakun J., Comprehension of paraquat adsorption on faujasite
zeolite X and Y in sodium form,
Adsorption Science & Technology, 2018,
36:684 [
Crossref], [
Google Scholar], [
Publisher]
[35]. Ghassamipour
S., Ghashghaei R., Zirconium dodecylphosphonate promoted synthesis of
xanthene derivatives by condensation reaction of aldehydes and
β-naphthol or dimedone in green media,
Monatshefte für Chemie-Chemical Monthly, 2015,
146:159 [
Crossref], [
Google Scholar], [
Publisher]
[36]. Song G., Wang
B., Luo H., Yang L., Fe3+-montmorillonite as a cost-effective and
recyclable solid acidic catalyst for the synthesis of xanthenediones,
Catalysis Communications, 2007,
8:673 [
Crossref], [
Google Scholar], [
Publisher]
[37]. Ilangovan A.,
Muralidharan S., Sakthivel P., Malayappasamy S., Karuppusamy S.,
Kaushik M., Simple and cost effective acid catalysts for efficient
synthesis of 9-aryl-1, 8-dioxooctahydroxanthene,
Tetrahedron Letters, 2013,
54:491 [
Crossref], [
Google Scholar], [
Publisher]
[38]. Dabiri M., Azimi S., Bazgir A., One-pot synthesis of xanthene derivatives under solvent-free conditions,
Chemical Papers, 2008,
62:522 [
Crossref], [
Google Scholar], [
Publisher]
[39]. Moradi F., Abdoli-Senejani M., Silica-coated Fe
3O
4
nanoparticle@silylpropyl triethylammonium heteropoly acid as a
nanomagnetic inorganic–organic hybrid catalyst for the green synthesis
of xanthene derivatives under solvent-free conditions,
Reaction Kinetics, Mechanisms and Catalysis, 2023, 1 [
Crossref], [
Google Scholar], [
Publisher]
[40]. Amoozadeh A., Rahmani S., Nano-WO
3-supported sulfonic acid: New, efficient and high reusable heterogeneous nano catalyst,
Journal of Molecular Catalysis A: Chemical, 2015,
396:96 [
Crossref], [
Google Scholar], [
Publisher]
[41]. Rezayati S.,
Erfani, Z.,Hajinasiri, R., Phospho sulfonic acid as efficient
heterogeneous Brønsted acidic catalyst for one-pot synthesis of
14H-dibenzo [a, j] xanthenes and 1, 8-dioxo-octahydro-xanthenes,
Chemical Papers, 2015,
69:536 [
Crossref], [
Google Scholar], [
Publisher]
[42]. Mir E., Hazeri N., Faroughi Niya H., Fatahpour M., Synthesis, identification and application of Fe
3O
4@THAM-Mercaptopyrimidine
nanoparticles as a novel and highly recyclable nanocatalyst in one-pot
multicomponent synthesis of 1, 8-dioxo-octahydroxanthenes and
polyhydroquinolines,
Research on Chemical Intermediates, 2023,
49:1439 [
Crossref], [
Google Scholar], [
Publisher]
[43]. Bhale P.S.,
Dongare S.B., Mule Y.B., An efficient synthesis of 1,
8-dioxooctahydroxanthenes catalysed by thiourea dioxide (TUD) in aqueous
media,
Chemical Science Transactions, 2015,
4:246 [
Google Scholar], [
Publisher]
[44]. Zhou Z., Deng X., [Et3NH][HSO4] catalyzed efficient and green synthesis of 1, 8-dioxo-octahydroxanthenes,
Journal of Molecular Catalysis A: Chemical, 2013,
367:99 [
Crossref], [
Google Scholar], [
Publisher]
[45]. Gong K., Fang
D., Wang H.L., Zhou X.L., Liu Z.L., The one-pot synthesis of
14-alkyl-or aryl-14H-dibenzo [a, j] xanthenes catalyzed by task-specific
ionic liquid,
Dyes and Pigments, 2009,
80:30 [
Crossref], [
Google Scholar], [
Publisher]
[46]. Safari J.,
Aftabi P., Ahmadzadeh M., Sadeghi M., Zarnegar Z., Sulfonated starch
nanoparticles: An effective, heterogeneous and bio-based catalyst for
synthesis of 14-aryl-14-
H-dibenzo [a, j] xanthenes,
Journal of Molecular Structure, 2017,
1142:33 [
Crossref], [
Google Scholar], [
Publisher]
[47]. Kundu
K.,Nayak, S.K., Camphor-10-sulfonic acid catalyzed condensation of
2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14
H-dibenzo [a, j] xanthenes,
Journal of the Serbian Chemical Society, 2014,
79:1051 [
Crossref], [
Google Scholar], [
Publisher]
[48]. Cao Y., Yao C., Qin B., Zhang H., Solvent-free synthesis of 14-aryl-14
H-dibenzo [a, j] xanthenes catalyzed by recyclable and reusable iron (III) triflate,
Research on Chemical Intermediates, 2013,
39:3055 [
Crossref], [
Google Scholar], [
Publisher]
[49]. Zolfigol
M.A., Moosavi-Zare A.R., Arghavani-Hadi P., Zare A., Khakyzadeh V.,
Darvishi G., WCl 6 as an efficient, heterogeneous and reusable catalyst
for the preparation of 14-aryl-14
H-dibenzo [a, j] xanthenes with high TOF,
RSC advances, 2012,
2:3618 [
Crossref], [
Google Scholar], [
Publisher]
[50]. Mohammadi R., Eidi E., Ghavami M., Kassaee M.Z., Chitosan synergistically enhanced by successive Fe
3O
4
and silver nanoparticles as a novel green catalyst in one-pot,
three-component synthesis of tetrahydrobenzo [α] xanthene-11-ones,
Journal of Molecular Catalysis A: Chemical, 2014,
393:309 [
Crossref], [
Google Scholar], [
Publisher]